CONTRIBUTION OF DIGITALIZATION TO THE IMPROVEMENT OF CATASTROPHIC RISKS MEASUREMENT
Abstract
References
Abbot, J., & Marohasy, J. (2014). Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks. Atmospheric Research, 138, 166-178.
Banks, E. (2005). Catastrophic Risk – Analysis and Management. England. John Wiley & Sons Ltd.
Cee, S. (2019). Using Big Data To Predict Natural Disasters. Deep Tech Wire. Preuzeto 8. juna sa sajta: http://deeptechwire.com/using-big-data-to-predict-natural-disasters
Choi, C., Kim, J., Kim, J., Kim, D., Bae, Y., & Hung Soo, K. (2018). Development of Heavy Rain Damage Prediction Model Using Machine Learning Based on Big Data. Advances in Meteorology, (2018), 1-11.
D’Arcy, S. P., Gorvett, R. W., Herbers, J. A., & Hettinger, T. E. (1997). Building a Dynamic Financial Analysis Model that Flies. Contingencies Magazine.
Data-Pop Alliance (2015). Big Data for Resilience: Realising the Benefits for Developing Countries. Synthesis repor, September2015.
Diers, D. (2009), Stochastic modelling of catastrophe risks in internal models. German Risk and Insurance Review (GRIR). 5(1).
Embrechts, P., Klüppelberg, C., & Mikosch, T. (2008). Modelling extremal events for Insurance and Finance, Berlin: Springer-Verlag.
Garrick, B.J. (2009). Quantifying and Controlling Catastrophic Risks. Elsevier Inc.
Janković, D., & Tešić, N. (2015). Major Cat Losses in Past Two Decades. Catastrophic Risks and Sustainable Development. Kočović, J., Jovanović Gavrilović, B., Đukić, V. (eds.), Belgrade: Faculty of Economics, University of Belgrade, ISBN: 978-86-403-1418-3, Chapter 10, pp.161-180.
Kaufmann, R., Gadmer, A., & Klett, R. (2001) Introduction to dynamic financial analysis. ASTIN Bulletin, 31 (1), 213–249.
Korn, R., Korn, E., & Kroisandt, G. (2010). Monte Carlo Methods and Models in Finance and Insurance, CHAPMAN & HALL/CRC Financial Mathematics Series.
Kočović, J., Paunović, B., & Jovović, M. (2014). Mogućnosti upravlјanja katastrofalnim rizicima. Novi ekonomist, VIII(16), 7-15.
Loridan, T., Crompton, R. P., & Dubossarsky, E. (2017). A Machine Learning Approach to Modeling Tropical Cyclone Wind Field Uncertainty. Monthly Weather Review, 145, 3203-3221.
Lundberg, I. (1903). Approximerad framställning af sannolikhetsfunctionen. II. Återförsäkring af kollektivrisken. Almqvist & Wiksell, Uppsala, Sweden.
Mikosch, T. (2004). Non-Life Insurance Mathematics: An Introduction with Stochastic Processes. Springer, Berlin, Germany.
Minor, K. (2013). Enhancing Catastrophe Risk Modeling in Insurance. IBM Big Data & Analytics Blogs. Preuzeto 6. juna sa sajta: https://www.ibmbig datahub.com/blog/enhancing-catastrophe-risk-modeling-insurance
Mosavi, A., Ozturk, P., & Chau, K.-W. (2018). Flood Prediction Using Machine Learning Models: Literature Review. Water, 10(11), 1-40.
Naveen, J. (2019). How AI Can And Will Predict Disasters. Forbes. Preuzeto 6. juna sa sajta: https://www.forbes.com/sites/cognitiveworld/2019/03/15/how-ai-can-and-will-predict-disasters/# 6629ba515be2
Rouet-Leduc, B., Hulbert, C., Lubbers, N., Barros, K., Humphreys, C. J., & Johnson, P. A. (2017). Machine Learning Predicts Laboratory Earthquakes. Geophysical Research Letters, 44, 9276-9282.
Schwab, K. (2016). The Fourth Industrial Revolution. Geneva: World Economic Forum.
Schwab, K., & Davis, N. (2018). Shaping the Fourth Industrial Revolution. Geneva: World Economic Forum.
Sivapalan, M., Blöschl, G., Merz, R., & Gutknecht, D. (2005). Linking flood frequency to long-term water balance: Incorporating effects of seasonality. Water Resources Resources, 41.
Swiss Re, Sigma No. 2, (2015). Natural catastrophes and man-made disasters in 2014: convective and winter storms generate most losses.
Swiss Re, Sigma No. 2, (2019). Natural catastrophes and man-made disasters in 2018: „secondary“ perils on the frontline.
Swiss Re, Sigma No.1, (2010.), Natural catastrophes and man-made disasters in 2009: catastrophes claim fewer victims, insured losses fall.
Tešić, N., & Paunović, M. (2018). Possibilities of Measuring Catastrophic Risks. Insurance in the Post-crisis Era. Kočović, J., Jovanović Gavrilović, B., Boričić, B., Radović Marković, M. (eds.), Belgrade: Faculty of Economics, University of Belgrade, ISBN 978-86-403-1548-7, Chapter 15, pp. 253-273.
Thywissen, K., (2006.), Components of Risk – A Comparative Glossary, Studies of the University: Research, Counsel, Education, Publication Series of UNU-EHS, No. 2.
Tsai, L. T., & Yang, C.-C. (2012). Improving measurement invariance assessments in survey research with missing data by novel artificial neural networks. Expert Systems with Applications, 39, 10456-10464.
Xu, Z., & Li, J. (2002). Short-term inflow forecasting using an artificial neural network model. Hydrological Processes, 16, 2423-2439.
Yu, M., Yang, C., & Li, Y. (2018). Big Data in Natural Disaster Management: A Review. Geosciences, 8(165), 1-26.