DOPRINOS DIGITALIZACIJE UNAPREĐENJU MERENJA KATASTROFALNIH RIZIKA

Univerzitet u Beogradu, Ekonomski fakultet, Srbija
Srbija

Univerzitet u Beogradu, Ekonomski fakultet, Srbija
Srbija

Univerzitet u Istočnom Sarajevu, Fakultet poslovne ekonomije Bijelјina, Republika Srpska, Bosna i Hercegovina
Bosna i Hercegovina


Apstrakt

Prirodne katastrofe i katastrofe izazvane lјudskim delovanjem nezaobilazan su deo postojanja i razvoja lјudske zajednice. Ostvarenje katastrofalnih rizika dovodi do brojnih lјudskih žrtava, uništavanja ekonomske i socijalne infrastrukture i narušavanja životne sredine. Stoga je merenje ovih rizika, u cilјu adekvatnog upravlјanja njima, pretpostavka održivog razvoja. Usled nedovolјnosti informacija o faktorima koji utiču na verovatnoću realizacije katastrofa, kao događaja niskog intenziteta i visoke frekvencije, merenje katastrofalnih rizika predstavlјa svojevrstan izazov u teoriji i praksi. Klasične teorije i metode merenja rizika pokazale su se neadekvatnim u pogledu mogućnosti blagovremenog identifikovanja, pouzdane procene i efikasnog upravlјanja ovim rizicima. Otuda proizilazi potreba za kreiranjem nove naučne paradigme, zasnovane na stohastičkoj teoriji, koja će omogućiti preciznije kvantifikovanje katastrofalnih rizika, pre svega rizika od prirodnih katastrofa. Predmet ovog rada je analiza doprinosa digitalizacije mogućnostima merenja katastrofalnih rizika. Analitika velikih podataka (Big Data), veštačka inteligencija (Artificial Intelligence – AI) i mašinsko učenje (Machine Learning), kao pokretači četvrte industrijske revolucije, donose višestruke mogućnosti u pogledu predviđanja katastrofalnih događaja. Nakon sagledavanja teorijskih i metodoloških pristupa, poseban akcenat u radu će biti stavlјen na potencijale korišćenja ovih tehnologija i relevantnih softverskih rešenja za merenje katastrofalnih rizika.

Ključne reči



Cijeli članak:


Reference


Abbot, J., & Marohasy, J. (2014). Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks. Atmospheric Research, 138, 166-178.

Banks, E. (2005). Catastrophic Risk – Analysis and Management. England. John Wiley & Sons Ltd.

Cee, S. (2019). Using Big Data To Predict Natural Disasters. Deep Tech Wire. Preuzeto 8. juna sa sajta: http://deeptechwire.com/using-big-data-to-predict-natural-disasters

Choi, C., Kim, J., Kim, J., Kim, D., Bae, Y., & Hung Soo, K. (2018). Development of Heavy Rain Damage Prediction Model Using Machine Learning Based on Big Data. Advances in Meteorology, (2018), 1-11.

D’Arcy, S. P., Gorvett, R. W., Herbers, J. A., & Hettinger, T. E. (1997). Building a Dynamic Financial Analysis Model that Flies. Contingencies Magazine.

Data-Pop Alliance (2015). Big Data for Resilience: Realising the Benefits for Developing Countries. Synthesis repor, September2015.

Diers, D. (2009), Stochastic modelling of catastrophe risks in internal models. German Risk and Insurance Review (GRIR). 5(1).

Embrechts, P., Klüppelberg, C., & Mikosch, T. (2008). Modelling extremal events for Insurance and Finance, Berlin: Springer-Verlag.

Garrick, B.J. (2009). Quantifying and Controlling Catastrophic Risks. Elsevier Inc.

Janković, D., & Tešić, N. (2015). Major Cat Losses in Past Two Decades. Catastrophic Risks and Sustainable Development. Kočović, J., Jovanović Gavrilović, B., Đukić, V. (eds.), Belgrade: Faculty of Economics, University of Belgrade, ISBN: 978-86-403-1418-3, Chapter 10, pp.161-180.

Kaufmann, R., Gadmer, A., & Klett, R. (2001) Introduction to dynamic financial analysis. ASTIN Bulletin, 31 (1), 213–249.

Korn, R., Korn, E., & Kroisandt, G. (2010). Monte Carlo Methods and Models in Finance and Insurance, CHAPMAN & HALL/CRC Financial Mathematics Series.

Kočović, J., Paunović, B., & Jovović, M. (2014). Mogućnosti upravlјanja katastrofalnim rizicima. Novi ekonomist, VIII(16), 7-15.

Loridan, T., Crompton, R. P., & Dubossarsky, E. (2017). A Machine Learning Approach to Modeling Tropical Cyclone Wind Field Uncertainty. Monthly Weather Review, 145, 3203-3221.

Lundberg, I. (1903). Approximerad framställning af sannolikhetsfunctionen. II. Återförsäkring af kollektivrisken. Almqvist & Wiksell, Uppsala, Sweden.

Mikosch, T. (2004). Non-Life Insurance Mathematics: An Introduction with Stochastic Processes. Springer, Berlin, Germany.

Minor, K. (2013). Enhancing Catastrophe Risk Modeling in Insurance. IBM Big Data & Analytics Blogs. Preuzeto 6. juna sa sajta: https://www.ibmbig datahub.com/blog/enhancing-catastrophe-risk-modeling-insurance

Mosavi, A., Ozturk, P., & Chau, K.-W. (2018). Flood Prediction Using Machine Learning Models: Literature Review. Water, 10(11), 1-40.

Naveen, J. (2019). How AI Can And Will Predict Disasters. Forbes. Preuzeto 6. juna sa sajta: https://www.forbes.com/sites/cognitiveworld/2019/03/15/how-ai-can-and-will-predict-disasters/# 6629ba515be2

Rouet-Leduc, B., Hulbert, C., Lubbers, N., Barros, K., Humphreys, C. J., & Johnson, P. A. (2017). Machine Learning Predicts Laboratory Earthquakes. Geophysical Research Letters, 44, 9276-9282.

Schwab, K. (2016). The Fourth Industrial Revolution. Geneva: World Economic Forum.

Schwab, K., & Davis, N. (2018). Shaping the Fourth Industrial Revolution. Geneva: World Economic Forum.

Sivapalan, M., Blöschl, G., Merz, R., & Gutknecht, D. (2005). Linking flood frequency to long-term water balance: Incorporating effects of seasonality. Water Resources Resources, 41.

Swiss Re, Sigma No. 2, (2015). Natural catastrophes and man-made disasters in 2014: convective and winter storms generate most losses.

Swiss Re, Sigma No. 2, (2019). Natural catastrophes and man-made disasters in 2018: „secondary“ perils on the frontline.

Swiss Re, Sigma No.1, (2010.), Natural catastrophes and man-made disasters in 2009: catastrophes claim fewer victims, insured losses fall.

Tešić, N., & Paunović, M. (2018). Possibilities of Measuring Catastrophic Risks. Insurance in the Post-crisis Era. Kočović, J., Jovanović Gavrilović, B., Boričić, B., Radović Marković, M. (eds.), Belgrade: Faculty of Economics, University of Belgrade, ISBN 978-86-403-1548-7, Chapter 15, pp. 253-273.

Thywissen, K., (2006.), Components of Risk – A Comparative Glossary, Studies of the University: Research, Counsel, Education, Publication Series of UNU-EHS, No. 2.

Tsai, L. T., & Yang, C.-C. (2012). Improving measurement invariance assessments in survey research with missing data by novel artificial neural networks. Expert Systems with Applications, 39, 10456-10464.

Xu, Z., & Li, J. (2002). Short-term inflow forecasting using an artificial neural network model. Hydrological Processes, 16, 2423-2439.

Yu, M., Yang, C., & Li, Y. (2018). Big Data in Natural Disaster Management: A Review. Geosciences, 8(165), 1-26.