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Abstract: The subject of this paper is the 

presentation of a practically implemented speech 

recognition model capable of distinguishing words 

based on artificial intelligence. The paper provides 

a detailed explanation of the application of a given 

voice recognition algorithm, implemented using 

standard deep and convolutional neural networks, 

the Python programming language, and machine 

learning libraries Keras and TensorFlow. This 

machine learning model recognizes several words 

using neural networks. The core concept of the 

presented model is the transformation of sound 

into images (log-spectrograms), leveraging lessons 

learned from image recognition to identify spoken 

words (audio recordings). The described voice 

control model was developed for the needs of the 

meat processing industry. Primarily, this model 

was designed for voice-based data entry from 

livestock ear tags at the slaughterhouse reception. 

The goal of implementing this model is to reduce 

human error in manual data entry and facilitate 

the overall adoption of the information system. 

The benefits of such a system are numerous. First 

and foremost, it would increase the speed and 

efficiency of every worker in all processes, thereby 

improving overall production. Additional benefits 

include enhanced tracking of information flow and 

a reduced risk of errors. Moreover, this system 

would indirectly contribute to workplace safety by 

reducing the number of injuries that often occur 

due to the removal of protective equipment, which 

complicates computer operation or the completion 

of paper documents. The proposed system allows 

computers to be removed from production 

facilities where climate and working conditions 

are challenging. 

Key words: artificial intelligence, neural network, 

model, speech recognition, manufacturing 

JEL classification: O33 

1. INTRODUCTION 

The subject of this paper is the presentation of a 

practically implemented speech recognition model 

capable of distinguishing spoken words based on 

artificial intelligence. The paper provides a 

detailed explanation of the application of the given 

voice recognition algorithm, implemented using 

standard deep and convolutional neural networks, 
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the Python programming language, and the 

machine learning libraries Keras and TensorFlow. 

Google, YouTube, Sony, and other renowned 

global companies have developed their voice 

recognition models using artificial intelligence. 

Their models are quite complex and extensive, as 

they are designed to recognize a vast vocabulary of 

a language. These systems require powerful 

computers capable of processing large amounts of 

data in a short time interval. 

Our machine learning model is designed for 

recognizing a smaller set of words using neural 

networks. The core concept of the presented model 

is the transformation of sound into images (log-

spectrograms), leveraging lessons learned from 

image recognition to identify spoken words (audio 

recordings). 

The described voice control model was developed 

for the needs of the meat processing industry. 

Primarily, this model was designed for voice-based 

data entry from livestock ear tags during the 

reception of livestock at the slaughterhouse. The 

goal of implementing this model is to reduce 

human error in manual data entry and to facilitate 

the acceptance of the information system by 

production workers as a whole. Most 

slaughterhouse workers have limited IT knowledge 

and often resist using computers for data entry and 

processing. 

The described system could also be used for voice-

commanded autonomous guided vehicles (AGVs) 

in meat production, replacing human labor in 

transporting meat to cold storage rooms. Once a 

worker fills the crates with meat, they can issue a 

voice command to the AGV robot to transport the 

pallet to a specific position in a designated cold 

storage chamber. Cold storage facilities for meat 

preservation, due to their extremely low 

temperatures, have adverse effects on workers' 

health. Employees who frequently enter and exit 

these storage rooms experience drastic temperature 

variations of over 50°C, leading to frequent sick 

leave and even permanent reductions in work 

capacity, which poses a significant challenge for 

employers in managing human resources. 

The benefits of such a system are numerous. 

Firstly, it would increase the speed and efficiency 

of workers in all processes, thus improving overall 

production. Additional benefits include better 

tracking of information flow and a reduced 

likelihood of errors during data entry. The 

proposed system would also indirectly enhance 

workplace safety by reducing work-related 

injuries. In slaughterhouses, worker injuries often 

occur due to the removal of protective equipment, 

which makes computer operation or paperwork 

completion difficult. 

The presented system enables the elimination of 

personal computers from various production 

facilities where climatic and working conditions 

are challenging. Data entry commands in the 

production process can be given by voice, while 

data storage and management of distributed ERP 

systems are handled by a voice recognition system 

utilizing artificial intelligence.  

Although this model was developed for the meat 

industry, we believe it can be successfully applied 

in many other industries. We consider that this 

model can be implemented in all workplaces 

where workers are exposed to high or low 

temperatures, dangerous chemicals, various 

contaminants, and where recording necessary data 

on paper or inputting data into a computer is 

particularly difficult or dangerous to the workers' 

health and life. 

2. LITERATURE REVIEW 

Numerous researchers have explored the 

development of hardware and software solutions 

for device control via voice commands. A 

fundamental aspect of this research has been the 

creation of various models for recognizing voice 

instructions. 

In 2016, Vajpai and colleagues examined speech 

signal processing, encompassing automatic speech 

recognition, synthetic speech, and natural language 

processing. Their study highlighted the increasing 

impact of these technologies on business, industry, 

and the usability of personal computers. They also 

traced the evolution of speech recognition systems 

within industrial applications, demonstrating how 

these advancements facilitate next-generation 

voice-enabled services. The research provided a 

comprehensive review of speech recognition 

technologies, summarizing key insights from 

existing studies and outlining their applications in 

sectors such as healthcare, robotics, forensic 

analysis, defense, and aviation. 

The challenge of speech intelligibility in noisy 

environments, such as hearing aids affected by 

background noise, was addressed by Park and 

colleagues in 2016. Their research focused on 

reducing babble noise without distorting human 

speech in low signal-to-noise ratio conditions. 

They proposed a supervised learning approach to 

map noisy speech spectra to clean speech spectra 

using fully convolutional neural networks, which 

require fewer parameters than fully connected 

networks. 

Deng and colleagues (2019) contributed to 

ensemble learning by developing linear and log-

linear stacking techniques for speech-class 

posterior probability estimation. Their research 

applied these methods to convolutional, recurrent, 
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and fully connected deep neural networks, 

formulating and solving convex optimization 

problems to enhance the accuracy of phone 

recognition. The results demonstrated that 

integrating multiple deep learning models 

significantly improved hierarchical feature 

extraction from raw acoustic signals. 

Azhiimah and colleagues (2020) reviewed voice-

controlled automation using Arduino from 2014 to 

2020, analyzing 25 academic journals. Their 

findings classified voice control into two types: 

voice recognition, which relies on EasyVR 

hardware and microcontrollers, and speech 

recognition, which operates via Android 

applications. Remote control functionality was 

achieved through Bluetooth and internet 

connectivity. The study identified factors 

influencing system performance, including 

pronunciation clarity, pitch, microphone distance, 

sound source, intonation, and noise levels. 

Many authors have written on the topic of speech 

recognition service integrated into an industrial 

training station. Govoreanu and colleagues (2021) 

approach leveraged a decentralized microservice 

architecture, with a speech recognition engine 

enabling seamless interaction among system 

components. By incorporating APIs for English 

and Romanian, the system improved recognition 

accuracy for task-oriented commands and 

significantly reduced response times. 

In the same year, Abdulkareem and colleagues 

focused on integrating speech recognition with the 

Internet of Things (IoT) for home automation. 

Their model utilized digital signal processing and 

the hidden Markov model to enhance command 

accuracy. A cloud-based approach leveraging 

Google’s API enabled internet access for 

command storage. With 150 recorded speech 

samples, the system achieved an accuracy rate 

exceeding 80%. 

Recent computing advancements have positioned 

voice recognition as a biometric technology that 

enhances security and convenience. However, 

automatic speech recognition accuracy remains a 

significant challenge. Fegade and colleagues 

(2021) reviewed the current state of voice 

recognition and its industrial applications, 

particularly in public safety solutions. 

In 2022, Rendyansyah and colleagues examined a 

voice-controlled robotic arm with four degrees of 

freedom. A computer system managed overall 

operations, with a single operator providing 

commands. The recognition model employed Mel-

Frequency Cepstral Coefficients and Artificial 

Neural Networks. Through 90 experimental trials, 

the system achieved a 94% success rate. However, 

variations in operator intonation and similar speech 

patterns occasionally caused errors, and the study 

did not assess multi-user performance. 

Sharma and colleagues (2023) highlighted the 

advantages of voice recognition in multitasking 

environments, allowing users to perform manual 

operations while issuing voice commands. Their 

study noted the growing adoption of speech 

recognition in artificial intelligence applications, 

particularly in voice assistants, smart home 

devices, and search engines. According to 

Research and Markets, the global voice 

recognition market is projected to grow at a 

compound annual rate of 17.2%, reaching $26.8 

billion by 2025. 

Hermawanto and colleagues (2024) investigated 

voice recognition for enhancing door security. 

Their study employed a trial-and-error approach to 

develop a system that grants access based on 

specific voice commands. The findings showed 

that the system effectively recognized commands 

within a 10 cm range, with accuracy decreasing as 

the distance increased beyond 15 cm. The research 

demonstrated the feasibility of voice-based 

security solutions but highlighted the need for 

further refinements in speech reception at greater 

distances. 

Collectively, these studies illustrate the continuous 

advancements in voice recognition technology and 

its diverse applications across industries. While 

significant progress has been made, challenges 

remain in terms of accuracy, noise resilience, and 

multi-user adaptability, pointing to future 

directions for research and development. 

3. DEVELOPMENT OF THE SPEECH 

RECOGNITION SYSTEM 

The architecture of the speech recognition system 

is shown in Figure 1. The user of this system is a 

worker in meat processing production. When the 

worker fills the crates with meat, they issue a voice 

command to the automated guided vehicle through 

the voicing system, specifying which chamber and 

position the pallet with the crates should be 

delivered to, using a Client (Android) application. 

The Client application then sends the user’s 

command (audio file) as a POST request to the 

Server-side application, where Docker Compose 

forwards the incoming request to a Docker 

container running an NGINX Web server. NGINX 

acts as a proxy and, through Docker Compose, 

communicates via the uWSGI protocol with 

another Docker container, forwarding the request 

through the Web Server Gateway Interface 

(uWSGI) Unix socket, which essentially represents 

the application web server. 
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Figure 1.  Architecture of the Distributed Voicing System 

 

 

Source: Authors 

 

Next, uWSGI sends a callable object to the Python 

Flask application. The Flask application serves as 

the endpoint that interacts with TensorFlow neural 

network models. Upon receiving the audio file, the 

Flask application first processes it through a neural 

network for noise reduction to enhance speech 

clarity. The cleaned audio is then forwarded to a 

convolutional neural network for prediction and 

recognition of the spoken command. 

After TensorFlow completes the prediction of the 

audio file, the Flask application returns the 

recognized word in textual format through the 

reverse path. First, it is sent to uWSGI, which, 

through the Docker orchestrator, forwards the 

response object to the NGINX container that 

originally initiated the request. NGINX, via 

Docker Compose, then returns the recognized 

word in textual format to the Client Android 

application, which initially sent the POST request 

to the server. 

A key question arises: Why are two web servers, 

NGINX and uWSGI, necessary? 

In short, NGINX is a high-performance web server 

that provides many essential configurations useful 

for real-world systems. However, it has very 

limited integration and support for Python, as it 

does not natively support the uWSGI protocol, 

which is required for communication between the 

Python application and the web server. uWSGI, on 

the other hand, is an application web server that 

serves as a gateway, understanding both 

environments. It translates the incoming POST 

request to the Python Flask application and later 

forwards the response object returned by Flask 

back to the NGINX web server. 

The server-side is structured using Docker 

containers, dividing the system into two main 

applications. One Docker container is dedicated to 

the NGINX web server, while the other contains 

uWSGI, Flask, and TensorFlow. Docker 

containers isolate independent software packages 

along with all necessary code and libraries 

required to run the application. 

By leveraging Docker's benefits, a microservices 

architecture was implemented, enabling cross-

platform compatibility, so that containers can run 

independently on various platforms such as Linux, 

Windows, and macOS, regardless of the hardware 

capabilities of the host machine. 

To manage the Docker containers, Docker 

Compose was implemented, allowing the creation 

of a container network through which the 

containers can communicate with each other 

efficiently. 

3.1. PREPARATION OF THE SPEECH 

DATASET 

It is necessary to extract the required dataset, 

which consists of key words that will be used to 

train the convolutional neural network (CNN). 

This dataset contains the same set of key words 

that the trained speech recognition system will 

later identify. In real-world voicing system 

implementations, one of the most time-consuming 

tasks is the collection (recording and processing) 

of training data. The dataset must contain a large 

number of samples, specifically audio WAV files, 

with spoken commands from multiple users who 

will utilize the system. To save time during the 

development and presentation of this system, 

which was built based on the previously described 

complex architecture, the Google AI dataset was 

selected. This decision was made due to the 

limited availability of publicly accessible datasets 

for sound recognition tasks, as well as the lack of 
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suitable datasets for keyword recognition. The 

Google AI dataset was used as the initial base for 

testing the developed model. It contains 

approximately 65,000 one-second-long audio files 

of 30 different spoken commands, recorded by 

thousands of speakers in real-world environments. 

The dataset includes commonly used commands 

such as: "yes", "no", "up", "down", "left", "right", 

"on", "off", "stop", "go", as well as numbers from 

0 to 9 and directional movement commands. This 

dataset is specifically designed to facilitate the 

development of basic voice commands for various 

applications. The first step is to extract features 

from all audio samples in the dataset and store 

them in a JSON file. The key features needed for 

speech recognition are Mel-Frequency Cepstral 

Coefficients (MFCCs). MFCCs are widely used in 

speech classification, including speech recognition, 

musical instrument classification, and music genre 

detection. The model primarily uses 13 MFCC 

coefficients, and the extracted data is stored as a 

two-dimensional array. The first dimension 

represents the number of time steps (or frames). 

The second dimension consists of 13 MFCC 

coefficients for each time step. Essentially, the 

audio snapshot is divided into segments, with each 

segment containing 13 MFCC coefficients 

extracted from the audio waveform. A Python 

script was developed to process and prepare the 

data, storing the extracted MFCC features in a 

JSON file for later use in training the 

convolutional neural network. 

3.2.  DEVELOPMENT AND TRAINING OF 

THE SPEECH RECOGNITION MODEL  

This section describes the development of a speech 

recognition model using TensorFlow and Keras 

libraries. A Python script was written to design the 

architecture of the CNN, compile it, train it, test it, 

and save the trained model for later use as the core 

component of the speech prediction system.  

The program first loads the dataset for training, 

validation, and testing. In the next step, the 

convolutional neural network model is built, then 

trained, followed by its evaluation using the test 

dataset, and finally, the trained CNN model is 

saved. Running the Python script initiates the 

training process of the neural network, after which 

the trained model is generated and saved under the 

name "model.h5". 

The number of epochs represents a hyperparameter 

that defines the total number of times the entire 

training dataset passes through the neural network 

during the learning process. The trained algorithm 

(tested on a dataset of 10 English-language 

commands) achieved its learning goal after 40 

epochs. The obtained loss estimate for this trained 

model is 0.3477, while its test accuracy for the 

dataset of 10 words is an impressive 91.25%. 

Figure 2 presents the generated graphs from the 

program, illustrating the validation of losses and 

model accuracy after each epoch. 

 

Figure 2.  Accuracy and Loss Estimation per Epoch 

 

Source: Authors 
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3.3. PREDICTION USING THE TRAINED 

SPEECH RECOGNITION MODEL 

The next step is to create a keyword recognition 

service that will load the trained and saved neural 

network model (model.h5) to perform keyword 

prediction. For this purpose, a class has been 

implemented that represents the keyword spotting 

service, which makes predictions based on the 

trained neural network model. 

To test the trained model, a folder named "test" 

must be created, containing “.wav” audio files of 

the words we want to predict (i.e., send to the 

trained model (model.h5) for recognition). Then, 

in the main function, within the "predict" method, 

the file path of the test audio samples must be 

passed as an argument to perform the prediction. 

An example of this Python script is provided 

below. 

if  name  == " main ": 

# create 2 instances of the keyword spotting 

service  

kss = Keyword_Spotting_Service() 

#kss1 = Keyword_Spotting_Service() 

# check that different instances of the keyword 

spotting service point back to the same object 

(singleton) 

#assert kss is kss1 

# make a prediction 

keyword = kss.predict("test/down.wav") keyword1 

= kss.predict("test/left.wav") 

print(f"Predicted keywords: {keyword}, 

{keyword1}") 

The result of the trained model's accuracy is shown 

on Figure 3. It can be seen that the trained model 

performs accurately and successfully predicts the 

keywords (audio files) it has been trained on. 

 

Figure 3.  Prediction of the trained model 

 

Source: Authors 

 

3.4.  SPEECH RECOGNITION SYSTEM AS A 

FLASK API 

The following presents the development and 

application of the TensorFlow neural network 

model as a Flask API. The speech recognition 

system (keyword spotting service) shown in the 

previous section was developed as a Flask 

application. Then, a client (client.py) was 

implemented, which can send audio files via 

HTTP POST requests to the Flask server 

(server.py) and return predictions. The Flask API 

on the server calls the keyword_spotting_service 

for prediction and sends the recognized word 

(audio file) response back to the client. The 

process works as follows: the Flask server 

(server.py) listens on localhost at port 5000 and 

accepts HTTP POST requests from the client 

(client.py). The server reads the request, extracts 

the audio file packaged in the request (POST 

request), and performs the keyword prediction 

from the audio file through the 

keyword_spotting_service. It then returns the 

prediction made by the trained convolutional 

neural network model back to the client. 

The implemented method provides the following 

functionalities: 

 Accepts and stores the audio file, 

 Calls the keyword_spotting_service (wrapper 

around the trained CNNs model – model.h5), 

 Performs the prediction (which word is 

contained in the incoming audio file), 

 Deletes the temporarily stored audio file in 

the current directory,   

 Returns the recognized keyword in JSON 

format. 

In real-world speech recognition systems, Flask 

cannot be used. Flask is primarily a development 

server and is not used in production environments. 

So far, a part of the application has been developed 
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that sends a POST request with the WAV audio 

file (keyword), and the Flask development server 

has been implemented, which accepts the POST 

request. The Flask application then forwards the 

audio file to TensorFlow, which analyzes the audio 

file information, makes a prediction, and then 

returns the response through the Flask 

development server to the test script. 

The described solution has proven to be a 

development application, representing the minimal 

architecture required to create a basic TensorFlow 

application model, but it cannot serve as a real 

application. To deploy the application in a real 

production context, a reliable web server must be 

included. 

3.5.  SPEECH RECOGNITION WITH UWSGI 

WEB SERVER 

To achieve a real-world applicable application, it is 

necessary to configure the uWSGI Web server 

with the Flask application, which contains the 

speech recognition system, including the trained 

convolutional neural network model for keyword 

recognition. 

The architecture has been extended by adding the 

uWSGI web (HTTP) server between the client 

application and the Flask application. The client 

application sends the audio file (POST request), 

which uWSGI accepts and forwards to the Flask 

application. Then, Flask calls TensorFlow, which 

makes the prediction of the keyword based on the 

trained convolutional neural network model. 

Afterward, Flask sends the response to uWSGI, 

which returns the prediction to the client 

application. 

3.6. SPEECH RECOGNITION ON DOCKER 

PLATFORM WITH NGINX WEB 

SERVER  

Below is the decomposition of the deep learning 

application for speech recognition using Docker 

containers. Additionally, the previously presented 

architecture of the application, specifically the 

implemented system, will practically include the 

NGINX web server and the orchestration of Flask 

and NGINX containers using Docker Compose. 

As the first step, an NGINX web server is added in 

front of uWSGI in the existing architecture, as 

shown in Figure 4. The reason for adding the 

NGINX web server is the development of an 

application based on Docker containers, which 

ensures its multiplatform capabilities, independent 

of hardware. This was done to avoid potential 

configuration issues and to achieve the 

implementation of a complex architecture at the 

microservices level. 

 

Figure 4.  Application Architecture with NGINX Web Server 

 

Source: Authors 

 

Next, the development of the Docker container 

network is shown, which contains two containers: 

one for NGINX and the other for the Flask 

application that also includes uWSGI, as shown in 

Figure 5. These containers will be orchestrated by 

Docker Compose, which will establish a network 

over which these two containers will 

communicate. The flow of information after the 

modified architecture is as follows: 

First, an HTTP POST request is sent with the 

keyword as an audio WAV file from the client. 

NGINX (which acts as a proxy server) accepts this 

request and forwards it to uWSGI (using a TCP 

socket that uses the uWSGI protocol for 

communication).  

Then, uWSGI forwards the data to the Flask 

application, which invokes the TensorFlow trained 

model of the convolutional neural network for 

prediction.  

The model predicts the incoming audio file (the 

keyword), and then the recognized word is 

returned in text format to the client application. 
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Figure 5. Containers and Docker 

 

Source: Authors 

 

After installing the Docker platform and 

configuring Docker Compose, the application was 

restructured into folders. The files related to data 

preparation, training, and the JSON file containing 

useful data about the audio content for training 

were separated. In the folder named "flask," 

everything related to the Flask application is 

stored. This includes the Flask-based speech 

recognition system, consisting of the 

keyword_spotting_service script that uses the 

trained machine learning model for keyword 

prediction, the saved trained model for speech 

recognition (model.h5), the Flask server 

application script (server.py), and the uWSGI 

configuration file. Everything necessary to contain 

the Flask Docker container is placed here. In the 

folder named "nginx," files containing instructions 

for configuring both Docker containers (NGINX 

and Flask containers) will be placed. 

Then, within the "flask" folder, a Docker file was 

created, which contains all the necessary 

instructions and configuration data for Docker to 

create the container. All of this was done using 

Python scripts. 

3.7. NOISE REMOVAL FOR IMPROVED 

SYSTEM PREDICTION 

Noise represents a significant obstacle for speech 

recognition systems in terms of their ability and 

accuracy in making predictions. Noise is also 

inevitable in production processes and real 

working environments. If noise is not taken into 

account during the preparation of the training data 

for the deep learning model for speech recognition, 

alongside correct audio features, incorrect and 

unnecessary features of the audio file, which 

represent noise, are extracted and sampled. This 

can later lead to inaccurate predictions from the 

trained deep learning model. For this reason, it is 

necessary for the system to automatically remove 

noise from the keyword before passing the audio 

file to the trained convolutional neural network 

(CNN) model for prediction. The audio file will 

first be passed to an additional trained neural 

network for noise removal, with the goal of 

filtering out such noise from the audio file without 

degrading the signal of interest. This ensures that 

the CNN model for keyword recognition receives 

only useful information, i.e., a "cleaned" audio file 

for prediction. Classic solutions for noise removal 

in speech typically use generative modeling. In 

these approaches, statistical methods like Gaussian 

Mixtures estimate the noise of interest and then 

recover the signal that contains the noise. 

However, recent developments have shown that 

deep learning often surpasses these solutions when 

noise data is available. Therefore, for the noise 

removal problem in the practical system, a deep 

learning model based on CNNs was chosen. 

The noisy input signal (audio file with noise) 

arrives from the client’s environment. The goal is 

to build a statistical model that can extract the 

clean signal (source) and return it to the user or, in 

this specific case, forward it to another trained 

model for prediction. The noise removal model 

focuses on separating the original speech signal 

from different types of noise, which the CNN 

model has been trained on. For the development 

and testing of the implemented noise removal 

neural network model to improve predictions, the 

following publicly available datasets were used: 

 Google AI training dataset – used for training 

the CNN model for prediction, 

 The UrbanSound8K dataset. 

In audio processing, the neural network needs to 

extract relevant features from the data. However, 

before the raw signal is fed into the network, it 

must be brought into the correct format. First, the 

audio signal samples (from both datasets) need to 

be reduced to 8 kHz, and silent frames should be 
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removed. The goal is to reduce the computation 

load and the dataset size. All of this audio 

processing was done using the Python Librosa 

library. A deep convolutional neural network for 

speech enhancement was implemented, which is 

largely based on the scientific paper "A Fully 

Convolutional Neural Network for Speech 

Enhancement." A program was created to train the 

neural network for noise removal. It was trained on 

the available UrbanSound8K dataset, which 

consists of 10 types of urban noise. This trained 

model stopped training and achieved accuracy at 

the 274th epoch (out of 400 set epochs). Root 

Mean Square Error RMSE is a useful metric for 

calculating accuracy. According to the National 

Digital Elevation Guidelines and FEMA 

guidelines, the accuracy of the trained model was 

calculated as 74.63%. In most of the processed 

examples, the model managed to reduce the noise, 

but it was not completely eliminated. 

Further research could explore the applicability of 

this algorithm in various production environments. 

First, it would be necessary to collect a noise 

dataset from slaughterhouse environments across 

all production processes. Then, it would be 

important to test how this noise removal algorithm 

behaves with the trained model for prediction in 

Serbian, as well as compare it with other 

algorithms that serve the same purpose. 

3.8. VOICE CONTROL APPLICATION IN 

SLAUGHTERHOUSES 

In order for the speech recognition system to be 

used in a real environment, two mobile 

applications were developed. The first application 

was developed for collecting keywords in the 

production environment, which are used for 

training the convolutional neural network model. 

The second application was developed for 

slaughterhouse production needs. These mobile 

Android applications were developed using the C# 

programming language and the XAMARIN 

framework. The slaughter process in 

slaughterhouses begins with the reception of the 

livestock at the slaughterhouse depot. Upon 

reception, each animal is tagged with an ear tag, 

which serves as its unique identifier. The reception 

of livestock through the voice-enabled 

slaughterhouse application is shown in Figure 6. 

The livestock reception process has significantly 

improved (particularly in terms of accuracy and 

productivity) with the developed voice control 

module. This module operates on an Android 

device, which is attached to the worker’s arm. The 

worker can manually enter the short number from 

the ear tag, or they can perform this operation 

through the voice control system. After the ear tag 

number is recognized, it is sent to the OPIL server, 

and the recognized number is displayed on the 

Android device’s screen, as shown in the lower-

left part of Figure 5. To reduce the amount of data 

sent to the server for recognition, a Push-To-Talk 

button (3D printed micro switch) was developed. 

When the worker presses the micro switch, the 

microphone function is activated, and the system 

expects the command to be given. The recognized 

or manually entered ear tag, as previously 

mentioned, is recorded through the IoT OPIL 

platform in the Orion Context Broker (OCB) on 

the VVT server, where the EarTag entity is 

created, storing all ear tags in a sequence 

(readings). When saving the entry, the ERP system 

is connected to the IoT OPIL Orion Context 

Broker (OCB) to read data about the ear tags and 

RFID tags of the half carcasses, in order to store 

these data for each saved warehouse item. 

 

Figure 6.  Voice Control Module Operation in Slaughterhouses 

 

Source: Authors
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CONCLUSION  

Even fifty years ago, science fiction books were 

written in which humans controlled various 

machines with their voices. It was only with the 

advent of modern computers that this human 

dream became a reality. 

This paper presents the development of a complex 

architecture for a practical deep learning system, 

created with the goal of developing a usable 

speech recognition system. The imperative was to 

develop a machine learning application, whose 

model is based on data analysis and artificial 

intelligence. To this end, convolutional neural 

network models for prediction and noise removal 

were developed and presented. These models were 

developed using the Python programming 

language and the TensorFlow and Keras libraries, 

which are tools in the field of data science. 

To enable the trained models to be used in the 

form of an application, an API was developed with 

a Flask application, through which the trained 

neural network models for noise removal and 

prediction are called. A limitation of Flask is that it 

is a deployment server, which is not used in 

production environments. To make this application 

usable in production, Web Server Gateway 

Interface (WSGI) was implemented in the 

architecture. WSGI is a software application added 

to the architecture to develop hosting services, as 

its native binary protocol allows communication 

with other servers. WSGI, as a communication 

gateway, enabled the integration of multiple 

incompatible technologies and environments into a 

single system. 

NGINX was added as the primary web server to 

accept HTTP POST requests arriving from the 

client application. NGINX, through the uWSGI 

protocol, facilitates communication with the Flask 

application, which at its core uses TensorFlow and 

Keras-trained models for deep learning based on 

the domain of data science. In order to create a 

system that can be multiplatform, an internal 

Docker container network was established, 

managed by the Docker Compose orchestrator. 

The decomposition of the complex architecture 

into separate containers led to the realization of the 

existing architecture at the microservice level. This 

allows for any changes to the neural network 

model or any other separate container without 

affecting the system’s overall operation. 

Additionally, it enables easy changes to the 

architecture and parallel development of the 

application by multiple teams, where each team 

can focus on developing a separate container, 

representing an independent unit. 

The client Android application, as well as the 

module for generating keywords for training, 

presented in this paper, enabled the practical 

application of this system in real-world working 

environments and demonstrated its benefits. Some 

of the advantages brought by the presented system 

include: 

 Overall production efficiency. 

 Significantly higher labor productivity and 

thus profitability. 

 Improvement of data traceability in complex 

production. 

 The possibility of implementation and 

integration into robotics and logistics. 

 

The next step in upgrading this work is conducting 

research on real data, which the presented 

architecture allows. It is necessary to investigate 

the accuracy of predictions made by the realized 

model in real production conditions, using a 

collected training data set in Serbian. Then, the 

accuracy of the prediction of the existing algorithm 

on the collected data should be evaluated, and the 

results should be compared with those obtained 

using other available algorithms and deep learning 

models. Research should also be done on the 

effectiveness of prediction in real environments, 

both with and without the application of the deep 

learning model for noise removal. A comparison of 

multiple noise removal algorithms should be 

conducted. The behavior of the trained models and 

the system should be monitored at different 

production locations (different machinery, noise 

levels, and production processes). 

The adaptation of the model for individual users, 

with and without noise removal algorithms, should 

also be explored. Training and testing on a data set 

from a single speaker compared to training on a 

dataset containing recordings from multiple 

speakers of different ages and genders should be 

done. The accuracy of models trained on male and 

female speakers needs to be verified. Further 

research should be conducted in terms of 

monitoring productivity, efficiency, and 

effectiveness, comparing the use of this system to 

existing solutions and the previous production 

process. 

We hope that this proposed model will be 

applicable to various manufacturing companies. 
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