

218

Proceedings of EKONBIZ 2025 Submitted: 10.04.2025.
ISBN: 978-99955-45-50-5 Accepted: 20.0.2025.
UDK: 007.52:681.53]: 658.5 Review a Book, Instrument, Computer Program, Case, Scientific Event

MODEL FOR VOICE RECOGNITION IN MANUFACTURING

PROCESSES

Saša Sudar

College of Applied Studies „Sirmium“, Sremska Mitrovica, Serbia

sasa.sudar@gmail.com

ORCID: 0009-0002-2601-2993

Zdravko Ivanković

College of Applied Studies „Sirmium“, Sremska Mitrovica, Serbia

ivankovic.zdravko@gmail.com

ORCID: 0009-0003-4044-6445

Srđan Damjanović

Faculty of Business Economics Bijeljina, University of East Sarajevo, Republic of Srpska, Bosnia and Herzegovina

srdjan.damjanovic@fpe.ues.rs.ba

ORCID: 0000-0003-4807-5311

Luis Silva Rodrigues

CEOS.PP, ISCAP, Polytechnic of Porto, Portugal

lsr@iscap.ipp.pt

ORCID: 0000-0001-5471-8083

Abstract: The subject of this paper is the

presentation of a practically implemented speech

recognition model capable of distinguishing words

based on artificial intelligence. The paper provides

a detailed explanation of the application of a given

voice recognition algorithm, implemented using

standard deep and convolutional neural networks,

the Python programming language, and machine

learning libraries Keras and TensorFlow. This

machine learning model recognizes several words

using neural networks. The core concept of the

presented model is the transformation of sound

into images (log-spectrograms), leveraging lessons

learned from image recognition to identify spoken

words (audio recordings). The described voice

control model was developed for the needs of the

meat processing industry. Primarily, this model

was designed for voice-based data entry from

livestock ear tags at the slaughterhouse reception.

The goal of implementing this model is to reduce

human error in manual data entry and facilitate

the overall adoption of the information system.

The benefits of such a system are numerous. First

and foremost, it would increase the speed and

efficiency of every worker in all processes, thereby

improving overall production. Additional benefits

include enhanced tracking of information flow and

a reduced risk of errors. Moreover, this system

would indirectly contribute to workplace safety by

reducing the number of injuries that often occur

due to the removal of protective equipment, which

complicates computer operation or the completion

of paper documents. The proposed system allows

computers to be removed from production

facilities where climate and working conditions

are challenging.

Key words: artificial intelligence, neural network,

model, speech recognition, manufacturing

JEL classification: O33

1. INTRODUCTION

The subject of this paper is the presentation of a

practically implemented speech recognition model

capable of distinguishing spoken words based on

artificial intelligence. The paper provides a

detailed explanation of the application of the given

voice recognition algorithm, implemented using

standard deep and convolutional neural networks,

 219

the Python programming language, and the

machine learning libraries Keras and TensorFlow.

Google, YouTube, Sony, and other renowned

global companies have developed their voice

recognition models using artificial intelligence.

Their models are quite complex and extensive, as

they are designed to recognize a vast vocabulary of

a language. These systems require powerful

computers capable of processing large amounts of

data in a short time interval.

Our machine learning model is designed for

recognizing a smaller set of words using neural

networks. The core concept of the presented model

is the transformation of sound into images (log-

spectrograms), leveraging lessons learned from

image recognition to identify spoken words (audio

recordings).

The described voice control model was developed

for the needs of the meat processing industry.

Primarily, this model was designed for voice-based

data entry from livestock ear tags during the

reception of livestock at the slaughterhouse. The

goal of implementing this model is to reduce

human error in manual data entry and to facilitate

the acceptance of the information system by

production workers as a whole. Most

slaughterhouse workers have limited IT knowledge

and often resist using computers for data entry and

processing.

The described system could also be used for voice-

commanded autonomous guided vehicles (AGVs)

in meat production, replacing human labor in

transporting meat to cold storage rooms. Once a

worker fills the crates with meat, they can issue a

voice command to the AGV robot to transport the

pallet to a specific position in a designated cold

storage chamber. Cold storage facilities for meat

preservation, due to their extremely low

temperatures, have adverse effects on workers'

health. Employees who frequently enter and exit

these storage rooms experience drastic temperature

variations of over 50°C, leading to frequent sick

leave and even permanent reductions in work

capacity, which poses a significant challenge for

employers in managing human resources.

The benefits of such a system are numerous.

Firstly, it would increase the speed and efficiency

of workers in all processes, thus improving overall

production. Additional benefits include better

tracking of information flow and a reduced

likelihood of errors during data entry. The

proposed system would also indirectly enhance

workplace safety by reducing work-related

injuries. In slaughterhouses, worker injuries often

occur due to the removal of protective equipment,

which makes computer operation or paperwork

completion difficult.

The presented system enables the elimination of

personal computers from various production

facilities where climatic and working conditions

are challenging. Data entry commands in the

production process can be given by voice, while

data storage and management of distributed ERP

systems are handled by a voice recognition system

utilizing artificial intelligence.

Although this model was developed for the meat

industry, we believe it can be successfully applied

in many other industries. We consider that this

model can be implemented in all workplaces

where workers are exposed to high or low

temperatures, dangerous chemicals, various

contaminants, and where recording necessary data

on paper or inputting data into a computer is

particularly difficult or dangerous to the workers'

health and life.

2. LITERATURE REVIEW

Numerous researchers have explored the

development of hardware and software solutions

for device control via voice commands. A

fundamental aspect of this research has been the

creation of various models for recognizing voice

instructions.

In 2016, Vajpai and colleagues examined speech

signal processing, encompassing automatic speech

recognition, synthetic speech, and natural language

processing. Their study highlighted the increasing

impact of these technologies on business, industry,

and the usability of personal computers. They also

traced the evolution of speech recognition systems

within industrial applications, demonstrating how

these advancements facilitate next-generation

voice-enabled services. The research provided a

comprehensive review of speech recognition

technologies, summarizing key insights from

existing studies and outlining their applications in

sectors such as healthcare, robotics, forensic

analysis, defense, and aviation.

The challenge of speech intelligibility in noisy

environments, such as hearing aids affected by

background noise, was addressed by Park and

colleagues in 2016. Their research focused on

reducing babble noise without distorting human

speech in low signal-to-noise ratio conditions.

They proposed a supervised learning approach to

map noisy speech spectra to clean speech spectra

using fully convolutional neural networks, which

require fewer parameters than fully connected

networks.

Deng and colleagues (2019) contributed to

ensemble learning by developing linear and log-

linear stacking techniques for speech-class

posterior probability estimation. Their research

applied these methods to convolutional, recurrent,

220

and fully connected deep neural networks,

formulating and solving convex optimization

problems to enhance the accuracy of phone

recognition. The results demonstrated that

integrating multiple deep learning models

significantly improved hierarchical feature

extraction from raw acoustic signals.

Azhiimah and colleagues (2020) reviewed voice-

controlled automation using Arduino from 2014 to

2020, analyzing 25 academic journals. Their

findings classified voice control into two types:

voice recognition, which relies on EasyVR

hardware and microcontrollers, and speech

recognition, which operates via Android

applications. Remote control functionality was

achieved through Bluetooth and internet

connectivity. The study identified factors

influencing system performance, including

pronunciation clarity, pitch, microphone distance,

sound source, intonation, and noise levels.

Many authors have written on the topic of speech

recognition service integrated into an industrial

training station. Govoreanu and colleagues (2021)

approach leveraged a decentralized microservice

architecture, with a speech recognition engine

enabling seamless interaction among system

components. By incorporating APIs for English

and Romanian, the system improved recognition

accuracy for task-oriented commands and

significantly reduced response times.

In the same year, Abdulkareem and colleagues

focused on integrating speech recognition with the

Internet of Things (IoT) for home automation.

Their model utilized digital signal processing and

the hidden Markov model to enhance command

accuracy. A cloud-based approach leveraging

Google’s API enabled internet access for

command storage. With 150 recorded speech

samples, the system achieved an accuracy rate

exceeding 80%.

Recent computing advancements have positioned

voice recognition as a biometric technology that

enhances security and convenience. However,

automatic speech recognition accuracy remains a

significant challenge. Fegade and colleagues

(2021) reviewed the current state of voice

recognition and its industrial applications,

particularly in public safety solutions.

In 2022, Rendyansyah and colleagues examined a

voice-controlled robotic arm with four degrees of

freedom. A computer system managed overall

operations, with a single operator providing

commands. The recognition model employed Mel-

Frequency Cepstral Coefficients and Artificial

Neural Networks. Through 90 experimental trials,

the system achieved a 94% success rate. However,

variations in operator intonation and similar speech

patterns occasionally caused errors, and the study

did not assess multi-user performance.

Sharma and colleagues (2023) highlighted the

advantages of voice recognition in multitasking

environments, allowing users to perform manual

operations while issuing voice commands. Their

study noted the growing adoption of speech

recognition in artificial intelligence applications,

particularly in voice assistants, smart home

devices, and search engines. According to

Research and Markets, the global voice

recognition market is projected to grow at a

compound annual rate of 17.2%, reaching $26.8

billion by 2025.

Hermawanto and colleagues (2024) investigated

voice recognition for enhancing door security.

Their study employed a trial-and-error approach to

develop a system that grants access based on

specific voice commands. The findings showed

that the system effectively recognized commands

within a 10 cm range, with accuracy decreasing as

the distance increased beyond 15 cm. The research

demonstrated the feasibility of voice-based

security solutions but highlighted the need for

further refinements in speech reception at greater

distances.

Collectively, these studies illustrate the continuous

advancements in voice recognition technology and

its diverse applications across industries. While

significant progress has been made, challenges

remain in terms of accuracy, noise resilience, and

multi-user adaptability, pointing to future

directions for research and development.

3. DEVELOPMENT OF THE SPEECH

RECOGNITION SYSTEM

The architecture of the speech recognition system

is shown in Figure 1. The user of this system is a

worker in meat processing production. When the

worker fills the crates with meat, they issue a voice

command to the automated guided vehicle through

the voicing system, specifying which chamber and

position the pallet with the crates should be

delivered to, using a Client (Android) application.

The Client application then sends the user’s

command (audio file) as a POST request to the

Server-side application, where Docker Compose

forwards the incoming request to a Docker

container running an NGINX Web server. NGINX

acts as a proxy and, through Docker Compose,

communicates via the uWSGI protocol with

another Docker container, forwarding the request

through the Web Server Gateway Interface

(uWSGI) Unix socket, which essentially represents

the application web server.

 221

Figure 1. Architecture of the Distributed Voicing System

Source: Authors

Next, uWSGI sends a callable object to the Python

Flask application. The Flask application serves as

the endpoint that interacts with TensorFlow neural

network models. Upon receiving the audio file, the

Flask application first processes it through a neural

network for noise reduction to enhance speech

clarity. The cleaned audio is then forwarded to a

convolutional neural network for prediction and

recognition of the spoken command.

After TensorFlow completes the prediction of the

audio file, the Flask application returns the

recognized word in textual format through the

reverse path. First, it is sent to uWSGI, which,

through the Docker orchestrator, forwards the

response object to the NGINX container that

originally initiated the request. NGINX, via

Docker Compose, then returns the recognized

word in textual format to the Client Android

application, which initially sent the POST request

to the server.

A key question arises: Why are two web servers,

NGINX and uWSGI, necessary?

In short, NGINX is a high-performance web server

that provides many essential configurations useful

for real-world systems. However, it has very

limited integration and support for Python, as it

does not natively support the uWSGI protocol,

which is required for communication between the

Python application and the web server. uWSGI, on

the other hand, is an application web server that

serves as a gateway, understanding both

environments. It translates the incoming POST

request to the Python Flask application and later

forwards the response object returned by Flask

back to the NGINX web server.

The server-side is structured using Docker

containers, dividing the system into two main

applications. One Docker container is dedicated to

the NGINX web server, while the other contains

uWSGI, Flask, and TensorFlow. Docker

containers isolate independent software packages

along with all necessary code and libraries

required to run the application.

By leveraging Docker's benefits, a microservices

architecture was implemented, enabling cross-

platform compatibility, so that containers can run

independently on various platforms such as Linux,

Windows, and macOS, regardless of the hardware

capabilities of the host machine.

To manage the Docker containers, Docker

Compose was implemented, allowing the creation

of a container network through which the

containers can communicate with each other

efficiently.

3.1. PREPARATION OF THE SPEECH

DATASET

It is necessary to extract the required dataset,

which consists of key words that will be used to

train the convolutional neural network (CNN).

This dataset contains the same set of key words

that the trained speech recognition system will

later identify. In real-world voicing system

implementations, one of the most time-consuming

tasks is the collection (recording and processing)

of training data. The dataset must contain a large

number of samples, specifically audio WAV files,

with spoken commands from multiple users who

will utilize the system. To save time during the

development and presentation of this system,

which was built based on the previously described

complex architecture, the Google AI dataset was

selected. This decision was made due to the

limited availability of publicly accessible datasets

for sound recognition tasks, as well as the lack of

222

suitable datasets for keyword recognition. The

Google AI dataset was used as the initial base for

testing the developed model. It contains

approximately 65,000 one-second-long audio files

of 30 different spoken commands, recorded by

thousands of speakers in real-world environments.

The dataset includes commonly used commands

such as: "yes", "no", "up", "down", "left", "right",

"on", "off", "stop", "go", as well as numbers from

0 to 9 and directional movement commands. This

dataset is specifically designed to facilitate the

development of basic voice commands for various

applications. The first step is to extract features

from all audio samples in the dataset and store

them in a JSON file. The key features needed for

speech recognition are Mel-Frequency Cepstral

Coefficients (MFCCs). MFCCs are widely used in

speech classification, including speech recognition,

musical instrument classification, and music genre

detection. The model primarily uses 13 MFCC

coefficients, and the extracted data is stored as a

two-dimensional array. The first dimension

represents the number of time steps (or frames).

The second dimension consists of 13 MFCC

coefficients for each time step. Essentially, the

audio snapshot is divided into segments, with each

segment containing 13 MFCC coefficients

extracted from the audio waveform. A Python

script was developed to process and prepare the

data, storing the extracted MFCC features in a

JSON file for later use in training the

convolutional neural network.

3.2. DEVELOPMENT AND TRAINING OF

THE SPEECH RECOGNITION MODEL

This section describes the development of a speech

recognition model using TensorFlow and Keras

libraries. A Python script was written to design the

architecture of the CNN, compile it, train it, test it,

and save the trained model for later use as the core

component of the speech prediction system.

The program first loads the dataset for training,

validation, and testing. In the next step, the

convolutional neural network model is built, then

trained, followed by its evaluation using the test

dataset, and finally, the trained CNN model is

saved. Running the Python script initiates the

training process of the neural network, after which

the trained model is generated and saved under the

name "model.h5".

The number of epochs represents a hyperparameter

that defines the total number of times the entire

training dataset passes through the neural network

during the learning process. The trained algorithm

(tested on a dataset of 10 English-language

commands) achieved its learning goal after 40

epochs. The obtained loss estimate for this trained

model is 0.3477, while its test accuracy for the

dataset of 10 words is an impressive 91.25%.

Figure 2 presents the generated graphs from the

program, illustrating the validation of losses and

model accuracy after each epoch.

Figure 2. Accuracy and Loss Estimation per Epoch

Source: Authors

 223

3.3. PREDICTION USING THE TRAINED

SPEECH RECOGNITION MODEL

The next step is to create a keyword recognition

service that will load the trained and saved neural

network model (model.h5) to perform keyword

prediction. For this purpose, a class has been

implemented that represents the keyword spotting

service, which makes predictions based on the

trained neural network model.

To test the trained model, a folder named "test"

must be created, containing “.wav” audio files of

the words we want to predict (i.e., send to the

trained model (model.h5) for recognition). Then,

in the main function, within the "predict" method,

the file path of the test audio samples must be

passed as an argument to perform the prediction.

An example of this Python script is provided

below.

if name == " main ":

create 2 instances of the keyword spotting

service

kss = Keyword_Spotting_Service()

#kss1 = Keyword_Spotting_Service()

check that different instances of the keyword

spotting service point back to the same object

(singleton)

#assert kss is kss1

make a prediction

keyword = kss.predict("test/down.wav") keyword1

= kss.predict("test/left.wav")

print(f"Predicted keywords: {keyword},

{keyword1}")

The result of the trained model's accuracy is shown

on Figure 3. It can be seen that the trained model

performs accurately and successfully predicts the

keywords (audio files) it has been trained on.

Figure 3. Prediction of the trained model

Source: Authors

3.4. SPEECH RECOGNITION SYSTEM AS A

FLASK API

The following presents the development and

application of the TensorFlow neural network

model as a Flask API. The speech recognition

system (keyword spotting service) shown in the

previous section was developed as a Flask

application. Then, a client (client.py) was

implemented, which can send audio files via

HTTP POST requests to the Flask server

(server.py) and return predictions. The Flask API

on the server calls the keyword_spotting_service

for prediction and sends the recognized word

(audio file) response back to the client. The

process works as follows: the Flask server

(server.py) listens on localhost at port 5000 and

accepts HTTP POST requests from the client

(client.py). The server reads the request, extracts

the audio file packaged in the request (POST

request), and performs the keyword prediction

from the audio file through the

keyword_spotting_service. It then returns the

prediction made by the trained convolutional

neural network model back to the client.

The implemented method provides the following

functionalities:

 Accepts and stores the audio file,

 Calls the keyword_spotting_service (wrapper

around the trained CNNs model – model.h5),

 Performs the prediction (which word is

contained in the incoming audio file),

 Deletes the temporarily stored audio file in

the current directory,

 Returns the recognized keyword in JSON

format.

In real-world speech recognition systems, Flask

cannot be used. Flask is primarily a development

server and is not used in production environments.

So far, a part of the application has been developed

224

that sends a POST request with the WAV audio

file (keyword), and the Flask development server

has been implemented, which accepts the POST

request. The Flask application then forwards the

audio file to TensorFlow, which analyzes the audio

file information, makes a prediction, and then

returns the response through the Flask

development server to the test script.

The described solution has proven to be a

development application, representing the minimal

architecture required to create a basic TensorFlow

application model, but it cannot serve as a real

application. To deploy the application in a real

production context, a reliable web server must be

included.

3.5. SPEECH RECOGNITION WITH UWSGI

WEB SERVER

To achieve a real-world applicable application, it is

necessary to configure the uWSGI Web server

with the Flask application, which contains the

speech recognition system, including the trained

convolutional neural network model for keyword

recognition.

The architecture has been extended by adding the

uWSGI web (HTTP) server between the client

application and the Flask application. The client

application sends the audio file (POST request),

which uWSGI accepts and forwards to the Flask

application. Then, Flask calls TensorFlow, which

makes the prediction of the keyword based on the

trained convolutional neural network model.

Afterward, Flask sends the response to uWSGI,

which returns the prediction to the client

application.

3.6. SPEECH RECOGNITION ON DOCKER

PLATFORM WITH NGINX WEB

SERVER

Below is the decomposition of the deep learning

application for speech recognition using Docker

containers. Additionally, the previously presented

architecture of the application, specifically the

implemented system, will practically include the

NGINX web server and the orchestration of Flask

and NGINX containers using Docker Compose.

As the first step, an NGINX web server is added in

front of uWSGI in the existing architecture, as

shown in Figure 4. The reason for adding the

NGINX web server is the development of an

application based on Docker containers, which

ensures its multiplatform capabilities, independent

of hardware. This was done to avoid potential

configuration issues and to achieve the

implementation of a complex architecture at the

microservices level.

Figure 4. Application Architecture with NGINX Web Server

Source: Authors

Next, the development of the Docker container

network is shown, which contains two containers:

one for NGINX and the other for the Flask

application that also includes uWSGI, as shown in

Figure 5. These containers will be orchestrated by

Docker Compose, which will establish a network

over which these two containers will

communicate. The flow of information after the

modified architecture is as follows:

First, an HTTP POST request is sent with the

keyword as an audio WAV file from the client.

NGINX (which acts as a proxy server) accepts this

request and forwards it to uWSGI (using a TCP

socket that uses the uWSGI protocol for

communication).

Then, uWSGI forwards the data to the Flask

application, which invokes the TensorFlow trained

model of the convolutional neural network for

prediction.

The model predicts the incoming audio file (the

keyword), and then the recognized word is

returned in text format to the client application.

 225

Figure 5. Containers and Docker

Source: Authors

After installing the Docker platform and

configuring Docker Compose, the application was

restructured into folders. The files related to data

preparation, training, and the JSON file containing

useful data about the audio content for training

were separated. In the folder named "flask,"

everything related to the Flask application is

stored. This includes the Flask-based speech

recognition system, consisting of the

keyword_spotting_service script that uses the

trained machine learning model for keyword

prediction, the saved trained model for speech

recognition (model.h5), the Flask server

application script (server.py), and the uWSGI

configuration file. Everything necessary to contain

the Flask Docker container is placed here. In the

folder named "nginx," files containing instructions

for configuring both Docker containers (NGINX

and Flask containers) will be placed.

Then, within the "flask" folder, a Docker file was

created, which contains all the necessary

instructions and configuration data for Docker to

create the container. All of this was done using

Python scripts.

3.7. NOISE REMOVAL FOR IMPROVED

SYSTEM PREDICTION

Noise represents a significant obstacle for speech

recognition systems in terms of their ability and

accuracy in making predictions. Noise is also

inevitable in production processes and real

working environments. If noise is not taken into

account during the preparation of the training data

for the deep learning model for speech recognition,

alongside correct audio features, incorrect and

unnecessary features of the audio file, which

represent noise, are extracted and sampled. This

can later lead to inaccurate predictions from the

trained deep learning model. For this reason, it is

necessary for the system to automatically remove

noise from the keyword before passing the audio

file to the trained convolutional neural network

(CNN) model for prediction. The audio file will

first be passed to an additional trained neural

network for noise removal, with the goal of

filtering out such noise from the audio file without

degrading the signal of interest. This ensures that

the CNN model for keyword recognition receives

only useful information, i.e., a "cleaned" audio file

for prediction. Classic solutions for noise removal

in speech typically use generative modeling. In

these approaches, statistical methods like Gaussian

Mixtures estimate the noise of interest and then

recover the signal that contains the noise.

However, recent developments have shown that

deep learning often surpasses these solutions when

noise data is available. Therefore, for the noise

removal problem in the practical system, a deep

learning model based on CNNs was chosen.

The noisy input signal (audio file with noise)

arrives from the client’s environment. The goal is

to build a statistical model that can extract the

clean signal (source) and return it to the user or, in

this specific case, forward it to another trained

model for prediction. The noise removal model

focuses on separating the original speech signal

from different types of noise, which the CNN

model has been trained on. For the development

and testing of the implemented noise removal

neural network model to improve predictions, the

following publicly available datasets were used:

 Google AI training dataset – used for training

the CNN model for prediction,

 The UrbanSound8K dataset.

In audio processing, the neural network needs to

extract relevant features from the data. However,

before the raw signal is fed into the network, it

must be brought into the correct format. First, the

audio signal samples (from both datasets) need to

be reduced to 8 kHz, and silent frames should be

226

removed. The goal is to reduce the computation

load and the dataset size. All of this audio

processing was done using the Python Librosa

library. A deep convolutional neural network for

speech enhancement was implemented, which is

largely based on the scientific paper "A Fully

Convolutional Neural Network for Speech

Enhancement." A program was created to train the

neural network for noise removal. It was trained on

the available UrbanSound8K dataset, which

consists of 10 types of urban noise. This trained

model stopped training and achieved accuracy at

the 274th epoch (out of 400 set epochs). Root

Mean Square Error RMSE is a useful metric for

calculating accuracy. According to the National

Digital Elevation Guidelines and FEMA

guidelines, the accuracy of the trained model was

calculated as 74.63%. In most of the processed

examples, the model managed to reduce the noise,

but it was not completely eliminated.

Further research could explore the applicability of

this algorithm in various production environments.

First, it would be necessary to collect a noise

dataset from slaughterhouse environments across

all production processes. Then, it would be

important to test how this noise removal algorithm

behaves with the trained model for prediction in

Serbian, as well as compare it with other

algorithms that serve the same purpose.

3.8. VOICE CONTROL APPLICATION IN

SLAUGHTERHOUSES

In order for the speech recognition system to be

used in a real environment, two mobile

applications were developed. The first application

was developed for collecting keywords in the

production environment, which are used for

training the convolutional neural network model.

The second application was developed for

slaughterhouse production needs. These mobile

Android applications were developed using the C#

programming language and the XAMARIN

framework. The slaughter process in

slaughterhouses begins with the reception of the

livestock at the slaughterhouse depot. Upon

reception, each animal is tagged with an ear tag,

which serves as its unique identifier. The reception

of livestock through the voice-enabled

slaughterhouse application is shown in Figure 6.

The livestock reception process has significantly

improved (particularly in terms of accuracy and

productivity) with the developed voice control

module. This module operates on an Android

device, which is attached to the worker’s arm. The

worker can manually enter the short number from

the ear tag, or they can perform this operation

through the voice control system. After the ear tag

number is recognized, it is sent to the OPIL server,

and the recognized number is displayed on the

Android device’s screen, as shown in the lower-

left part of Figure 5. To reduce the amount of data

sent to the server for recognition, a Push-To-Talk

button (3D printed micro switch) was developed.

When the worker presses the micro switch, the

microphone function is activated, and the system

expects the command to be given. The recognized

or manually entered ear tag, as previously

mentioned, is recorded through the IoT OPIL

platform in the Orion Context Broker (OCB) on

the VVT server, where the EarTag entity is

created, storing all ear tags in a sequence

(readings). When saving the entry, the ERP system

is connected to the IoT OPIL Orion Context

Broker (OCB) to read data about the ear tags and

RFID tags of the half carcasses, in order to store

these data for each saved warehouse item.

Figure 6. Voice Control Module Operation in Slaughterhouses

Source: Authors

 227

CONCLUSION

Even fifty years ago, science fiction books were

written in which humans controlled various

machines with their voices. It was only with the

advent of modern computers that this human

dream became a reality.

This paper presents the development of a complex

architecture for a practical deep learning system,

created with the goal of developing a usable

speech recognition system. The imperative was to

develop a machine learning application, whose

model is based on data analysis and artificial

intelligence. To this end, convolutional neural

network models for prediction and noise removal

were developed and presented. These models were

developed using the Python programming

language and the TensorFlow and Keras libraries,

which are tools in the field of data science.

To enable the trained models to be used in the

form of an application, an API was developed with

a Flask application, through which the trained

neural network models for noise removal and

prediction are called. A limitation of Flask is that it

is a deployment server, which is not used in

production environments. To make this application

usable in production, Web Server Gateway

Interface (WSGI) was implemented in the

architecture. WSGI is a software application added

to the architecture to develop hosting services, as

its native binary protocol allows communication

with other servers. WSGI, as a communication

gateway, enabled the integration of multiple

incompatible technologies and environments into a

single system.

NGINX was added as the primary web server to

accept HTTP POST requests arriving from the

client application. NGINX, through the uWSGI

protocol, facilitates communication with the Flask

application, which at its core uses TensorFlow and

Keras-trained models for deep learning based on

the domain of data science. In order to create a

system that can be multiplatform, an internal

Docker container network was established,

managed by the Docker Compose orchestrator.

The decomposition of the complex architecture

into separate containers led to the realization of the

existing architecture at the microservice level. This

allows for any changes to the neural network

model or any other separate container without

affecting the system’s overall operation.

Additionally, it enables easy changes to the

architecture and parallel development of the

application by multiple teams, where each team

can focus on developing a separate container,

representing an independent unit.

The client Android application, as well as the

module for generating keywords for training,

presented in this paper, enabled the practical

application of this system in real-world working

environments and demonstrated its benefits. Some

of the advantages brought by the presented system

include:

 Overall production efficiency.

 Significantly higher labor productivity and

thus profitability.

 Improvement of data traceability in complex

production.

 The possibility of implementation and

integration into robotics and logistics.

The next step in upgrading this work is conducting

research on real data, which the presented

architecture allows. It is necessary to investigate

the accuracy of predictions made by the realized

model in real production conditions, using a

collected training data set in Serbian. Then, the

accuracy of the prediction of the existing algorithm

on the collected data should be evaluated, and the

results should be compared with those obtained

using other available algorithms and deep learning

models. Research should also be done on the

effectiveness of prediction in real environments,

both with and without the application of the deep

learning model for noise removal. A comparison of

multiple noise removal algorithms should be

conducted. The behavior of the trained models and

the system should be monitored at different

production locations (different machinery, noise

levels, and production processes).

The adaptation of the model for individual users,

with and without noise removal algorithms, should

also be explored. Training and testing on a data set

from a single speaker compared to training on a

dataset containing recordings from multiple

speakers of different ages and genders should be

done. The accuracy of models trained on male and

female speakers needs to be verified. Further

research should be conducted in terms of

monitoring productivity, efficiency, and

effectiveness, comparing the use of this system to

existing solutions and the previous production

process.

We hope that this proposed model will be

applicable to various manufacturing companies.

ACKNOWLEDGEMENTS

This research was supported by the Ministry of

Scientific and Technological Development and

Higher Education of the Republika Srpska under

the Agreement on Co-financing of the Scientific

and Research Project No.: 19.032/961-47/24 dated

30.12.2024.

228

REFERENCES

[1] Balamurugan, S., Ayyasamy, A. & Joseph,

K.S. (2021). IoT-Blockchain driven

traceability techniques for improved safety

measures in food supply chain. Int. J. Inf.

Technol, 1–12.

[2] Damjanović, S. & Popović, B. (2008).

Praćenje proizvoda RFID tehnologijom. Novi

Ekonomist, broj 4, 25 - 28.

[3] Damjanović, S., Katanić, P. & Drakul, B.

(2021). The impact of the covid-19 pandemic

on the global community’s mobility. Novi

Ekonomist, Vol 15(2), broj 30, 15-23.

[4] Fearne, A. (1998). The evolution of

partnerships in the meat supply chain:

Insights from the British beef industry.

Supply Chain Management, 3(4), 214–231.

[5] Hobbs, J.E. (2021). The Covid-19 pandemic

and meat supply chains. Meat Science,

Volume 181, 1-6.

[6] Ilić, S., Damjanović, S. & Katanić, P. (2023).

Prednosti i nedostaci primjene pametnih

kućanskih uređaja. Zbornik radova

EKONBIZ 2023 (129-143). Bijeljina:

University of East Sarajevo, Faculty of

Business Economics Bijeljina.

[7] Katanić, P. & Damjanović, S. (2021).

Otkrivanja prevare prilikom prodaje

proizvoda preko interneta. Zbornik radova

EKONBIZ 2022 (152-161). Bijeljina:

University of East Sarajevo, Faculty of

Business Economics Bijeljina.

[8] Kumar, V. (2016). New kid on the

blockchain. Focus Blockchain, Vol. 8 No. 3,

19-22.

[9] Liu, P., Hendalianpour, A., Hamzehlou, M.,

Feylizadeh, M. & Razmi, J.. (2021). Identify

and rank the challenges of implementing

sustainable supply chain blockchain

technology using the bayesian best worst

method. Technol. Econ. Dev. Econ. 27, 656–

680.

[10] Mai, N., Bogason, S.G., Arason, S., Árnason,

S.V. & Matthíasson, T.G. (2010). Benefits of

traceability in fish supply chains – case

studies. British Food Journal, Vol. 112 No. 9,

976-1002.

[11] Pal, A., & Kant, K. (2019). Using Blockchain

for Provenance and Traceability in Internet of

Things-Integrated Food Logistics. Computer,

52(12), 94–98.

[12] Steven, A. B. (2015). Supply Chain Structure,

Product Recalls, and Firm Performance:

Empirically Investigating Recall Drivers and

Recall Financial Performance Relationships.

Decision Sciences, 46(2), 477–483.

[13] Wang, S., Ghadge, A., Aktas, E. (2024).

Digital Transformation in Food Supply

Chains: An Implementation Framework.

Supply Chain Management, Vol. 29 No. 2,

328-350.

[14] Xu, J., Guo, S., Xie, D. & Yan Y. (2020).

Blockchain: A new safeguard for agri-foods.

Artificial intelligence in agriculture 4(1), 1-

32.

[15] Yadava, V.S., Singh, A.R., Raut, R.D.,

Mangla, S.K., Luthr, S. & Kumar A. (2022).

Exploring the application of Industry 4.0

technologies in the agricultural food supply

chain, A systematic literature review.

Computers & Industrial Engineering 169(S1).

ISSN 0360-8352.

This work is licensed under the Creative

Commons Attribution-NonCommercial-

ShareAlike 4.0 International License

https://www.emerald.com/insight/publication/issn/1359-8546
https://www.sciencedirect.com/science/article/pii/S2589721720300234#!
https://www.sciencedirect.com/science/article/abs/pii/S0360835222003631#!

